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CONTEXT 
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CONTEXT 
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THERMO-ACOUSTIC INSTABILITIES 

FLOW VISUALIZATION : RED AREAS DENOTE BURNT GAS. 

The Berkeley backward facing step experiment. 

Premixed gas 



November, 2014 EMALCA, Puerto Madryn 7 

THERMO-ACOUSTIC INSTABILITIES 

• Self-sustained oscillations arising from the coupling between 

a source of heat and the acoustic waves of the system 

 

• Known since a very long time (Rijke, 1859; Rayleigh, 1878) 

 

 

• Not fully understood yet …  

 

• but surely not desirable … 
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BETTER AVOID THEM …  
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BETTER AVOID THEM …  

LPP SNECMA 

AIR 

FUEL 

LPP injector 
(SNECMA) 
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FLAME/ACOUSTICS COUPLING 

COMBUSTION 

ACOUSTICS 

Modeling problem Wave equation 

Rayleigh criterion: 

Flame/acoustics coupling promotes instability if 

pressure and heat release fluctuations are in phase 
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OUTLINE 

1. A simple case 

 

2. Computing the whole flow 

 

3. Computing the fluctuations only 

 

4. An actual study case 
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A TRACTABLE 1D PROBLEM 

BURNT GAS 

 

 

IMPOSED 

VELOCITY 

IMPOSED 

PRESSURE 
FLAME 

n , t 

FRESH GAS 
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Kaufmann, Nicoud & Poinsot, Comb. Flame, 2002 

• Consider a 1D straight duct hosting an infinitely thin 1D flame 
which separates unburnt (cold) and burnt (hot) gas 
 
 
 
 
 
 
 
 

• Assume that the gas are at rest, except for small amplitude 
acoustic perturbations 
 

• A model describing the response of the flame to acoustic 
perturbations is needed … 
 
 



November, 2014 EMALCA, Puerto Madryn 13 

MODELING THE FLAME 
• An actual flame is not steady 

• Its shape and size may change if the upstream velocity changes 

• Example: Numerical simulation of a 2D flame in a dump 

combustor (A. Giauque, CTR SP Stanford, 2006) 

 

 

Oscillating 

flow rate 

Moving

Flame 
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MODELING THE FLAME 
• Here the flame is considered 1D but its heat release may vary to 

reflect an actual deforming flame 

• the n-t model is used to relate the unsteady heat release to the 

acoustic velocity (Crocco, 1952) 

 

 

 

 

 

 

• In this view, the flame is just and only an acoustic element (which 

is obviously a VERY strong assumption) 

 

 

𝑛: amplitude of the flame response 

τ: time delay of the flame response  

𝑞′ 𝑡 ~𝑛 × 𝑢′ 𝑡 − 𝜏   
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EQUATIONS 
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DISPERSION RELATION 

• Solve the 4x4 homogeneous linear system to find out the 4 wave 

amplitudes 

 

• Consider Fourier modes 

 

 

 

 

• Condition for non-trivial (zero) solutions to exist 
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STABILITY OF THE COUPLED MODES 

• Eigen frequencies 

 

 

 

•  Steady flame n=0: 

 

 

 

• Asymptotic development for n<<1: 
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TIME LAG EFFECT 

• The imaginary part of the frequency is 

 

 

 

 

• Steady flame modes such that 

 

 

• The unsteady HR destabilizes the flame if 
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TIME LAG EFFECT 

• The imaginary part of the frequency is 

 

 

 

 

• Steady flame modes such that 

 

 

• The unsteady HR destabilizes the flame if 
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EFFECT OF FLAME-ACOUSTICS 

COUPLING 

Steady flame 
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THE REAL WORLD IS MORE COMPLEX 

• Flow physics 

– turbulence, partial mixing, chemistry, two-phase flow , combustion 

modeling, heat loss, wall treatment, radiative transfer, … 

• Acoustics 

– complex impedance, mean flow effects, acoustics/flame coupling, 

non-linearity, limit cycle, non-normality, mode interactions, … 

• Numerics 

– Low dispersive – low dissipative schemes, non linear stability, 

scalability, non-linear eigen value problems, … 
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OUTLINE 

1. A simple case 

 

2. Computing the whole flow 

 

3. Computing the fluctuations only 

 

4. An actual study case 
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NAVIER-STOKES EQUATIONS 

• The 3D PDE’s governing the flow of a constant density (𝜌) fluid are: 

 Mass conservation (continuity): 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 

 Momentum: 
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
 , with    𝑖 = 1,2,3 

 

• Remarks: 
 𝑝 is pressure and 𝜈 is the kinematic viscosity (constant if Newtonian fluid) 

 The non-linear term 𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
 arises from the inertia effects ; if large enough, it is 

responsible for turbulence generation 



THE EQUATIONS TO BE SOLVED … 
• 3D, reacting, multi-species, gazeous mixture …  
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THE EQUATIONS TO BE SOLVED … 
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THE EQUATIONS TO BE SOLVED … 
• 3D, reacting, multi-species, gazeous mixture …  
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THE EQUATIONS TO BE SOLVED … 
• 3D, reacting, multi-species, gazeous mixture …  

28 November, 2014 EMALCA, Puerto Madryn 



THE EQUATIONS TO BE SOLVED … 

• 3D, reacting, multi-species, gazeous mixture …  

Sensible enthalpy of species k 

Specific enthalpy of species k 

Sensible enthalpy of the mixture 

Specific enthalpy of the mixture 

Total enthalpy of the mixture 

Total non chemical enthalpy of the mixture 

E = H – p/r Total non chemical energy of the mixture 
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THE EQUATIONS TO BE SOLVED … 

• 3D, reacting, multi-species, gazeous mixture … as a first step !! 

• Do not forget: 

– 2-phase flow effects, Turbulence modelling, Complex diffusion, … 

– High Performance Computing issues, Huge data management, … 

 

 

• Large Eddy Simulation is feasible today … 
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EXAMPLE #1  
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Alstom injector – P. Schmitt - CERFACS 



EXAMPLE #2  
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Ignition of a Turbomeca combustion chamber 

Y. Sommerer & M. Boileau - CERFACS 



EMALCA, Puerto Madryn  

33 

November, 2014 

Large Eddy Simulation of a full annular  

combustion chamber Staffelbach et al., 2008 

• The first azimuthal mode is found unstable from LES, at 740 Hz 

• Same mode found unstable experimentally 

EXAMPLE #3  
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PARALLEL COMPUTING 

• Large scale unsteady computations require huge computing 

resources, an efficient codes … 

 

processors 
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PARALLEL COMPUTING 



WHY DO WE NEED MORE ? 

• LES/brute force bring a partial answer by giving a picture of what 
happens when a combustor oscillates 

 

• But it does not really say why, how, under which conditions the 
instabilities appear. And it is really CPU/memory  consuming 

 

• Appropriate low order tools are needed to  

– interpret the data and understand the reason why a combustor 
becomes unstable 

– Perform parametric studies to address questions as: 

– What is the best strategy to stabilize a combustor which proved 
unstable 

– uncertainty quantification, robust design, margin to stability,…  
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OUTLINE 

1. A simple case 

 

2. Computing the whole flow 

 

3. Computing the fluctuations only 

 

4. An actual study case 
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CONSIDERING ONLY PERTURBATIONS 
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LINEARIZED EULER EQUATIONS 

 assume homogeneous mixture 

 neglect viscosity 

 

 decompose each variable into its 

mean and fluctuation  

 

 

 

 assume small amplitude 

fluctuations 
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Linearized Euler Equations 

•  the unknown are the small amplitude fluctuations, 

•  the mean flow quantities must be provided 

•  requires a model for the heat release fluctuation q1 

•  contain all what is needed, and more …: acoustics + vorticity + entropy 
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Zero Mach number assumption 

• No mean flow or “Zero-Mach number” assumption 

 

 

 

 

 

 

 

 

 

 

 

 

• Probably well justified below 0.01 
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LINEAR EQUATIONS 
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- The unknowns are the fluctuating quantities 

 

- The mean density, temperature, … fields must be provided 

 

- A model for the unsteady HR q1 is required to close the system 
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THE HELMHOLTZ EQUATION 

• Since ‘periodic’ fluctuations are expected, let’s work in the 

frequency space 

 

 

 

• With this notation:  

– Re 𝜔 = 𝜔𝑟 is the angular frequency of oscillation 

– Im 𝜔 = 𝜔𝑖 is the growth/decay rate of the fluctuation (unstable if 𝜔𝑖 > 0) 

 

• From the set of linear equations for r1, u1, p1, T1 , the following 

wave equation can be derived 
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3D ACOUSTIC CODES 
• Let us first consider the simple steady flame case (no forcing term): 

 

 

 

• Boundary conditions may be simple  

 

 

 

• Or based on a complex valued boundary impedance, suitable for 

nozzles, upstream/downstream acoustic element 
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inlet  walls,solidfor  suitable:0ˆˆ
0  nnu pr
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TUM combustor: first seven modes 

f (Hz) type 

143 1L 

286 1C plenum 

503 2C plenum 

594 2L 

713 3C plenum 

754 1C combustor 

769 3L 



QUESTION 

• There are many modes in the low-frequency regime 

 

• They can be predicted in complex geometries 

 

• Boundary conditions and multiperforated liners have first order 
effect and they can be accounted for properly  

 

• All these modes are potentially dangerous 

 

 

 

Which of these modes are made 

unstable by the flame ? 
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ACCOUNTING FOR THE UNSTEADY 

FLAME 
• Need to solve the thermo-acoustic problem 

 

 

 

 

• The unsteady heat release must be modelled to close the problem  

 

• This is certainly the most difficult part of the modeling effort 
required to represent thermo-acoustic instabilities 

 

• As already discussed for the simple 1D configuration, q may be 
related to the acoustic velocity upstream of the flame 
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FLAME TRANSFER FUNCTION 

• The flame response can be deduced from either 

– Theoretical model for simple flames (e.g.: Schuller et al.,  Comb. Flame, 2003) 

– Experimental data (e.g.: Palies et al. Comb. Flame, 2010) 

– Large Eddy Simulation (e.g.: Giauque et al., J Turb., 2005) 

 

• In many cases, only information about the volume integrated heat 

release is available through a global flame response: 
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GLOBAL FLAME TRANSFER FUNCTION 

ACOUSTIC VELOCITY 

AT THE REFERENCE 

POSITION 

ACOUSTIC 

WAVE 
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GLOBAL HEAT 

RELEASE 
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VALIDATION 

• This strategy was used for example by Silva et al. Comb. Flame, 2013 

• Swirled stabilized combustor studied at EM2C (Palies et al., Comb. 
Flame, 2011) with 24 different configurations 
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??????????????????????????????????????????? 

??????????????????????????????????????????? 

??????????????????????????????????????????? 

S: stable regime  U: Unstable regime 
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Flame shape by  

chemiluminiscence 
𝑛𝑙𝑜𝑐𝑎𝑙 𝜏𝑙𝑜𝑐𝑎𝑙 

Global Flame transfer Function  

from experiment (Palies et al. Comb. Flame, 2010) 

Field of Flame Transfer Function 

 useable in a Helmholtz solver 

VALIDATION 
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• This strategy was used with some success (Silva et al. Comb. 

Flame, 2013) … 

52 

S: STABLE U: UNSTABLE S-U: MARGINAL 

EXPERIMENT No activity Strong amplitude Small amplitude 

SIMULATION 𝜔𝑖 < 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝜔𝑖 > 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝜔𝑖 ≈ 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 

Only 3 cases (out of 24) with partial disagreement 

VALIDATION 
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OUTLINE 

1. A simple case 

 

2. Computing the whole flow 

 

3. Computing the fluctuations only 

 

4. An actual study case 

 



• Main contributors:  

– L. Benoit, C. Sensiau, E. Gullaud, E. Motheau, P. Salas, C. Silva, K. 

Wieczorek, A. Ndiaye, F. Ni  

– A. Dauptain, L. Giraud, G. Staffelbach, F. Nicoud, Th. Poinsot 

 

• Support from SAFRAN/SNECMA (since 2000) as well as 

ANR and EU 

• Integrated in the C3SM framework for generating Human-

Machine Interface 

• Now in use in design departments in the SAFRAN Group  
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THE AVSP THERMOACOUSTIC SOLVER 



AN ACTUAL INDUSTRIAL CASE 
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AN ACTUAL INDUSTRIAL CASE 
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FLAME LOCATION 
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CLASSICAL ACOUSTIC ANALYSIS 

 

 

Which of these modes are made 

unstable by the flame ? 

 

 

P. Salas – PhD thesis - CERFACS 
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FLAME RESPONSE FROM LES 

• A large Eddy Simulation (solving the whole set of flow 

equations) has been performed to numerically measured 

the flame transfer function 

• Several pulsed LES  were performed since the results 

depend on the frequency od excitation 

 

 

 

 

 

P. Salas – PhD thesis - CERFACS 
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EFFECT OF THE FLAME ON ACOUSTICS 

P. Salas – PhD thesis - CERFACS 
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PARAMETRIC STUDY: TIME DELAY 

P. Salas – PhD thesis - CERFACS 

Mode of interest #1 

Mode of interest #2 

Mode of interest #3 

THE SWIRLER SHOULD BE DESIGNED IN SUCH A WAY TO PRODUCE A 

TIME DELAY OF THE FLAME RESPONSE IN THIS RANGE 
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THANK YOU !! 

 

More details, slides, papers, … 

http://www.math.univ-montp2.fr/~nicoud/ 

 

http://www.cerfacs.fr 

http://www.math.univ-montp2.fr/~nicoud/
http://www.math.univ-montp2.fr/~nicoud/
http://www.math.univ-montp2.fr/~nicoud/

